True pedigree errors more frequent than apparent errors for single nucleotide polymorphisms.
نویسندگان
چکیده
Single nucleotide polymorphisms (SNPs) are currently being developed for use in disequilibrium analyses. These SNPs consist of two alleles with varying degrees of polymorphism. A natural design for use with SNPs is the 'haplotype relative risk' sampling design in which a father, mother, and child are typed at an SNP locus. Given such a trio of genotypes, we ask: what is the probability that a pedigree error (a change from one allele to the other) at an SNP locus will be detected using only Mendel's laws as a check? We calculate the probability of detecting such errors for a hypothetical SNP locus with varying degrees of polymorphism and for various true error rates. For the sets of allele frequencies considered, we find that the detection rates range between 25 and 30%, the detection rate being lowest when the two alleles have equal frequencies and the highest when one allele has a frequency of 10%. Based on this detection rate, we determine that the true error rate is roughly 3.3-4 times that of the apparent error rate at an SNP locus. The greatest discrepancy between true and apparent error rates occurs when allele frequencies are equal.
منابع مشابه
Genotyping errors, pedigree errors, and missing data.
Our group studied the effects of genotyping errors, pedigree errors, and missing data on a wide range of techniques, with a focus on the role of single-nucleotide polymorphisms (SNPs). Half of our group used simulated data, and half of our group used data from the Collaborative Study on the Genetics of Alcoholism (COGA). The simulated data had no missing genotypes and no genotyping errors, so o...
متن کاملI-35: Polar Body Analysis by Array CGH Identifies Women with Varying Susceptibility to Aneuploidy and Suggests that Non-disjunction Is Not The Predominant Mechanism Leading to Aneuploidy in Humans
Background: The maternal age effect for trisomy is well known. However what is less established is whether certain women are more (or less) prone to segregation errors, independent of age. Trisomy arises primarily through maternal meiosis I chromosome segregation errors however the precise mechanism by which these errors occur is unclear. Current dogma attributes the origin of trisomy to malseg...
متن کاملSingle Nucleotide Polymorphisms and Association Studies: A Few Critical Points
Uncovering DNA sequence variations that correlate with phenotypic changes, e.g., diseases, is the aim of sequence variation studies. Common types sequence variations are Single nucleotide polymorphism (SNP, pronounced snip).SNPs are the third-generation molecular marker. SNP represents a DNA sequence variant of a single base pair with the minor allele occurring in more than 1% of a given popula...
متن کاملTypes and frequencies of sequencing errors in methyl-filtered and high c0t maize genome survey sequences.
The Maize Genome Sequencing Consortium has deposited into GenBank more than 850,000 maize (Zea mays) genome survey sequences (GSSs) generated via two gene enrichment strategies, methylation filtration and high-C(0)t (HC) fractionation. These GSSs are a valuable resource for generating genome assemblies and the discovery of single nucleotide polymorphisms and nearly identical paralogs. Based on ...
متن کاملمطالعات درخت تصمیم در برآورد ریسک ابتلا به سرطان سینه با استفاده از چند شکلیهای تک نوکلوئیدی
Abstract Introduction: Decision tree is the data mining tools to collect, accurate prediction and sift information from massive amounts of data that are used widely in the field of computational biology and bioinformatics. In bioinformatics can be predict on diseases, including breast cancer. The use of genomic data including single nucleotide polymorphisms is a very important ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human heredity
دوره 49 2 شماره
صفحات -
تاریخ انتشار 1999